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During the generation and transmission of nerve impulses, the cytoplasm behaves like an excitable medium
that self-regulates the shapes and magnitudes of the output excitation. In connection with this self-regulatory
function, one can readily think of the plasma membrane as a nerve organ holding the key role in the mecha-
nisms of generation and transmission of the transmembrane potential, namely, it is expected to provide the
essential feedback that stabilizes the stimulus. Here, a simple and coherent picture of self-regulation of the
nerve impulse is proposed in terms of one single feedback associated with the main excitable biological organ
of the nervous system. In this purpose, an electrodynamic theory is developed within the framework of a cable
model in which the membrane capacitor is regarded as a charge-management electrical component with a
defined capacity-voltage characteristic. It is found that in both myelinated and myelin-free nerve fiber contexts,
the transmembrane excitations are well-localized short impulses whose shape and stability are determined by
the capacity-voltage characteristic assumed to govern the self-excitability properties of the nerve membrane.
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I. INTRODUCTION

The nerve conduction represents one of the most investi-
gated physiological activities from both experimental and
theoretical standpoints, and currently a wealth of electro-
physiological recordings is available on this activity in con-
nection with several families of biological systems including
humans and animals. According to these electrophysiological
data the nerve impulse is a self-regenerative pulse wave as-
sociated with the electrochemical activity of biological or-
gans, the main function of which is to allow excitable cells
such as muscle and nerve cells to carry a signal over a long
distance �1,2� throughout the nervous system. It is a propa-
gating form of the primary electrical signal generated by
nerve cells, the so-called action potential �3,4� arising from
changes in the permeability of the nerve cell’s axonal mem-
branes to specific ions.

As now well established, during the generation and trans-
mission of the nerve impulse �3–8�, the leading edge of the
depolarization region triggers adjacent membranes to depo-
larize causing a self-propagation of the excitation related to
the transmembrane potential down the nerve fiber �9�. As
first suggested by Hodgkin and Huxley �4�, a convenient way
to describe the nerve impulse conduction is to think of the
nerve fiber as an electrical transmission line. Thus, in its
most conventional formulation the Hodgkin-Huxley electri-
cal model assumes currents in extracellular and intracellular
fluids to be Ohmic so that the net transmembrane current is
the sum of ionic and capacitive currents. The conservation
law for current flow across the membrane then reads �3,4�

Cm
�V

�t
= D

�2V

�x2 + Iions�V� . �1�

In this formulation, the membrane capacity Cm is fix while
ionic currents Iions are functions of the transmembrane volt-

age V thus providing the feedback necessary to sustain the
stimulations of the nerve fiber.

However, while the above electrical-circuit approach puts
an emphasis on ionic currents as the direct sources of feed-
backs responsible for the self-regulation of the nerve stimu-
lus, there have been several experimental evidences �10,11�
of a significant dependence of the membrane capacity on the
impulse shape. Namely, in the case of squid giant axons a
noticeable change in the membrane capacity at the onset of a
nerve impulse has been reported. Moreover, by analyzing the
time course of a transmembrane stimulus Cole and Curtis
�12� noted that the onset of the abrupt fall in the membrane
capacity coincided with a threshold amplitude of the trans-
membrane excitation. There have been recent attempts �see,
e.g., Ref. �11�� to explain all these observations in terms of
change in the excitation regime, i.e., a consequence of the
nerve impulse moving from the active to the resting phases
where the membrane resistivity assumes different values. But
this behavior could also be understood as reflecting a self-
regulatory function of the membrane vis-a-vis the charges
stored in the membrane capacitor, and whose main role is to
keep the intensity of the transmembrane excitation within a
finite interval.

As we are interested in the electrodynamics of the nerve
impulse, it is instructive recalling some of the salient prop-
erties of the nerve fiber structure that motivated its classic
representation in terms of an electrical cable �12–14�, but
which also underline the qualitative role of the membrane in
the generation of nerve impulse. The nerve fiber is often
viewed as a cylinder with walls made from the cell mem-
brane with intracellular and extracellular fluids �9�. In this
picture, the intracellular fluid stands for a conductive liquid
with a high concentration of potassium ions but low concen-
tration of sodium and chlorine ions, while the cell membrane
acts like a barrier preventing ions from the intracellular liq-
uid from mixing with the external solution. The resting po-
tential sets up across the membrane as a result of the differ-
ence in ion concentrations. During the resting phase �i.e.,
nerve polarization�, the membrane becomes selectively per-*Electronic address: adikande@ictp.it
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meable to ionic currents which flow rapidly into the cell
reversing the polarity of the action potential. From the stand-
point of the electrical cable representation, the selective and
regulatory functions of the nerve membrane suggest a man-
agement of ionic charges stored in the membrane capaci-
tance, so the membrane capacitance behaves quite like a ca-
pacitive diode �or VARACTOR� in a self-regenerative circuit
�15–24� where the capacitance is of a nonlinear capacity with
a specific capacity-voltage �CV� characteristic. In general,
the specific CV characteristic is needed to maintain desired
finite threshold amplitudes of the voltage excitation across
the circuit.

The nerve is known to serve as a motor organ for several
biological functions, one most important being the neuro-
muscular activities �2,9� in which the feedback effect of the
nerve membrane is reflected through a self-excitability con-
trolling muscular contractions �9�. Therefore a good under-
standing of the mechanism underlying the generation and
propagation of the nerve excitation is relevant for better un-
derstanding the functioning of many other organs as well as
the biological system as a whole.

The present work aims at probing the consistency of a
model for the nerve impulse generation and transmission
mechanisms, based on the hypothesis of the membrane as the
source of the essential feedback controlling shapes and ro-
bustness of the nerve impulse. Our working symbolic circuit
is the common nerve transmission line model �9,11�, except
that we consider the possibility for the membrane capacity to
vary with the total amount of ionic charges exchanged across
the nerve membrane at some time t.

In the next section �i.e., Sec. II�, after a brief introduction
of the model Kirchhoff laws are applied to derive the equa-
tions governing the propagation of the transmembrane volt-
age excitation. These are discrete difference, first-order non-
linear differential equations which can take distinct forms for
different CV characteristics of the membrane capacity. In
Sec. III, a time series analysis will be carried out to explore
the possible shape patterns for the transmembrane excitation
that the capacitive feedback is likely to drive. In Sec. IV, the
full nerve transmission line equation is discussed in the con-
tinuum limit, i.e., when the size of electrical sections of the
line is typically very small so that the nerve can be consid-
ered infinite. Possibilities for analytical solutions to this
equation will be considered for two illustrative CV charac-
teristics that lead to an impulse with both well localized spa-
tial shapes and relatively brief time courses. Sec. V will be
devoted to concluding remarks and a brief summary of re-
sults.

II. NERVE TRANSMISSION LINE MODEL
AND VOLTAGE EQUATIONS

In excitable biological systems such as the nerve, an ac-
tion potential propagates in form of wave which can display
different shape profiles depending on the response of the
main governing biological organ. In this last respect, the
nerve impulse can be seen as a potential difference across the
plasma membrane of the nerve, and because it is highly se-
lective vis-a-vis the charges exchanged across it the nerve

membrane �e.g., the axoplasmic layer of the squid giant axon
�12–14�� can be considered as a self-regulatory organ in the
processes of generation and propagation of the nerve im-
pulse. Electrophysiological evidences suggest that the cell
membrane separating the extracellular fluid from the cyto-
plasm can be represented by a RC parallel circuit: in this
picture the capacity Cm is related to the charge storage in the
lipid membrane, while the resistor Rm stands for the resis-
tance of ionic channels. In addition, the RC combination is
interspersed with an external resistance Re and an internal
resistance Ri representing, respectively, the resistances of the
external fluid and the cytoplasm.

We assume that every constant potential change adds lin-
early to the resting potential and thus can be ignored. More-
over, the radial section of axons suggests an electrical-circuit
representation of the nerve transmission equivalent to the
long cylindrical electrical cable. Accordingly, characteristic
electrical parameters such as Ri, Re, Rm and so on can be
readily referred to per unit of the cable length, i.e., ri
=Ri /�x, re=Re /�x, rm=Rm /�x, where �x is the size of an
elementary circuit.

Instructively, the way biological organs contributing to
the nerve impulse are arranged in the nerve fiber is quite
relevant in the design of a minimum acceptable theoretical
transmission line model. In a myelinated nerve fiber, elemen-
tary circuits can be identified through repeated sections of
myelin sheets interrupted by nodes of Ranvier. When there is
no myelin this arrangement still holds as no nerve compo-
nent other that the myelin sheet is absent, so that the nerve
fiber can be seen as a periodic ladder line with repeated
identical circuits. Our working model can therefore be rep-
resented by the symbolic transmission line sketched in Fig.
1. It consists of three main parts, namely, the external fluid,
the interior of nerve fiber, and the membrane which electrical
elements form components of the transmission line �9,11�. To
take into account the active and resting states in every exci-
tation cycle, electrical cells of the transmission line will be
assumed to group two elementary circuits with similar elec-
trical components but different magnitudes. Denoting by
Ea,r, ra,r, Ca,r the membrane electromagnetic field, resistance
and capacitance respectively in the active �a� and resting �r�
regions, Kirchhoff’s laws lead to the following voltage equa-
tions, valid in the two elementary circuits composing the nth

electrical cell �of length �x�:

n+1n−1 n

Vn−1
Vn Vn+1

aE

Ra Rr

Cr

RiRi

E r
Ca

FIG. 1. The symbolic nerve transmission line model under
study
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�Qa,r�Vn�
�t

+
1

ra,r�x
�Vn − Ea,r� =

1

ri�x
�Vn+1 − 2Vn + Vn−1� ,

�2�

where Qa,r�Vn� is the total charge available at time t in the
capacitor of the a or r section of the nth electrical cell, and ri
is the homogeneous resistance �per unit length of the circuit�
of the interior fluid.

Formula �2� refers to a discrete set of partial differential
equations which can be solved independently for the voltage
passing the active and resting regions of an n elementary
circuit. However, because of continuity requirement in the
shape profiles of the voltage in the two regions, appropriate
boundary conditions are to be applied. These boundary con-
ditions shall determine the threshold amplitudes and eventu-
ally speeds of the voltage excitation in the two regions, in the
case when the membrane capacitance has a fixed CV char-
acteristic the continuity condition will not affect the intrinsic
profile of the transmembrane impulse as the two equations
are similar differing only through magnitudes of their char-
acteristic constant electric elements namely Ea,r, ra,r, as well
as the constant parameters in the CV laws. From what pre-
ceeds we can concentrate on only one among the two equa-
tions in formula �2�. Therefore, in all what follows the analy-
sis will be carried out on the following discrete set of
differential equations:

�Q�Vn�
�t

+
1

r�x
�Vn − E� =

1

ri�x
�Vn+1 + Vn−1 − 2Vn� . �3�

Physically, the left hand side of the last equation represents
the sum of the capacitive current across the membrane and
the leakage through ion channels, while the right hand side
accounts for the propagation of the transmembrane voltage
excitation by means of node-to-node transmission. In the
present description no phenomenological current is intro-
duced, as we cannot quantitalively determine a priori the
fractions of the total amount of currents from individuals
among the various ions which cross the membrane, without
precise information about the responses of the membrane to
each ionic species. Instead, we assume that ions reaching the
membrane are accumulated in the membrane capacitance
which will determine the amount of ionic current crossing
the membrane, according to the total voltage set across the
capacitance. From this last standpoint, it is ready to view the
membrane capacitance as a self-regenerative diode with a
well-defined CV characteristic. As already stressed in the
introduction, experimental results on the squid giant axons
give evidence of an increase in the membrane capacitance in
the rising phase of the transmembrane stimulus. So the CV
law of the membrane capacitance in this specific context, and
probably for many other biological contexts of nerve fibers,
can be determined from experimental data. However, our
main focus here is the theoretical implication, qualitatively
speaking, of the assumption of the nerve membrane capacitor
as the main source of feedback governing both shapes and
stability of the transmembrane impulse. In this last purpose,
we shall consider trial CV characteristics which are polyno-
mial functions of the voltage, two simplest forms implying

the following expressions for the total charge available in the
membrane capacitor at any time t:

Q�V� = Cm0�1 − ��V��V , �4�

and

Q�V� = Cm0�1 − ��V�2�V , �5�

where Cm0 is the bare value of the membrane capacity and �
in Eqs. �4� and �5� is a parameter having dimension of the
inverse voltage and inverse voltage squared, respectively,
hereafter referred to as the feedback parameter. Since � is
assumed small in the present study, amplitudes of the trans-
membrane voltage will always remain within a finite interval
with boundary values fixed by the feedback.

III. TIME SERIES ANALYSIS OF THE TRANSMEMBRANE
VOLTAGE EQUATION

The central issue raised by the assumption of the feedback
function of the nerve membrane, relates to characteristic fea-
tures of the impulse profiles governed by this feedback. As
we rely on the nonlinear CV characteristics to provide perti-
nent information on this issue, it is certainly of great instruc-
tion questioning currently available experimental data on the
issue, in order to retrieve key insights that can guide our
analysis. In this last respect, the first relevant aspect concerns
the typical shape profile of the propagating nerve impulse
which, as the many electrophysiological recordings found in
the literature suggest, is pulselike. Second, unlike many other
chemical activities occurring in biological systems �25� such
as those achieving long-term controls via hormonal mecha-
nisms, the nervous system utilizes ultrafast mechanisms of
chemical and electrical transmissions to propagate signals
and commands. Brief impulses are thus essential to allow the
nervous system mediate short term and even immediate com-
munications, while ensuring control of inter relationships be-
tween activities of various body systems. It is therefore in-
teresting to see to which extent the feedback picture of the
nerve membrane can account for both the pulse shape and a
short time course of the nerve impulse. In this last purpose it
is useful to proceed to time series analysis of the voltage Eq.
�3�, i.e., analyzing its solutions without the spatial spread.
Thus, in the absence of the diffusion term we obtain the
following single anharmonic oscillator equation:

�Q�V�
�t

+
1

r�x
�V − E� = 0. �6�

As the anharmonicity in the last equation stems from the
voltage dependence of the membrane capacity, we must ex-
pect time variation in the resulting transmembrane excitation
to clearly carry signature of the capacitive feedback. We no-
tice about this last point that the case of the nerve fiber with
a constant capacity has been discussed at length and solu-
tions are known to be exponentially varying in time with a
dominant kink shape. However, because of the linear char-
acter of the voltage equation, the kink shape is infinitely
extended and in addition has an arbitrary amplitude. For a
myelinated fiber, where the myelin sheet strongly screens
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current exchanges across the membrane, the membrane re-
sistance is very large so that the voltage equation can be
approximated by

�Q�V�
�t

= 0. �7�

The last equation, for a constant capacity, admits a unique
solution which is an arbitrary constant amplitude. As estab-
lished in Ref. �11�, the transmembrane excitation in this spe-
cific context is a step impulse with an amplitude unspecified
within the linear theory. If now we assume the capacity to
vary with the transmembrane voltage as suggested by any
one of the two CV laws Eqs. �4� or �5�, we find two constant
solutions representing two possible distinct thresholds of the
transmembrane voltage, one of which is explicitly deter-
mined by the capacitive feedback.

Unlike the myelinated fiber just discussed, for which the
transmembrane stimulus has a step profile referring to a
nerve impulse with a delta shape �spike�, the nonmyelinated
fiber seems to possess a more rich dynamics as the associate
voltage equation, i.e., Eq. �6� suggests. We solved this last
equation numerically following a simple fourth-order Runge-
Kutta scheme, initial voltages for stable solutions are not
unique but should be sufficiently small compared with the
threshold values defined by the feedback coefficient � in the
two CV laws Eqs. �4� and �5�. Figures 2 and 3 display tem-
poral profiles of the transmembrane voltage �left column�
and current �right column� for the two distinct laws of varia-
tion in the total membrane charge given by Eqs. �4� and �5�,
respectively. For all curves characteristic parameters of the
model are dimensionless and are given arbitrary values, as
our main motivation here is much more a qualitative analy-
sis. Thus, we assumed E=50 and Cm0r�x=1 while the feed-
back parameter � is varied as follow, from the top pair of
graphs to the bottom pair of graphs in the two figures: �
=0.0015,0.002,0.005,0.01.

The top pair of graphs in the two figures corresponds to
temporal profiles of the transmembrane voltage �left� and
current �right� for the linear capacity-voltage characteristic
Eq. �4�, in the case of very small values of the feedback �.
According to the left graph, the voltage increases from a
minimum to a maximum threshold with a kink shape that
exponentially extends with time. The time course of the
transmembrane voltage excitation is thus relatively longer at
very small values of the feedback parameter �, so that the
corresponding shapes of transmembrane voltage are still
dominated by the exponential behavior predicted within the
linear theory �11�. However, as � increases, profiles of the
transmembrane excitation reflect more and more short im-
pulses with well localized shapes. Likewise, on the right
graphs the pulse shape of the transmembrane current is more
and more well localized when � is increased, consistently
with the reduction in the time course of the voltage excita-
tion observed in the left graphs.

In addition to their sharp profiles, one of the remarkable
features of shapes of the transmembrane voltage and current
at relatively large values of the feedback parameter �, is the
deviation from a pure exponential variation as it is apparent
through the finite tails as t tends asymptotically to infinity.

This is particularly noticeable in the two last pairs of graphs
in Figs. 2 and 3, and reflects their finite time courses due to
the anharmonicity from the feedback promoting solitary-
wave excitations which are self-reinforcing waves of perma-
nent form.

Though we do not expect none of the two above CV
characteristics to give exact description of the physical
realm, it would be interesting, nevertheless, to gain insight
on the basis of the numerical results obtained in Figs. 2 and
3 onto the most physically relevant form among the two CV
characteristics considered. Before getting to that point, it is
worth remarking that in the present description the nerve
impulse over the nerve transmission line should correspond
actually to the potential difference between two boundary
nodes of every elementary circuit. Therefore, since the mem-
brane resistance is constant the nerve impulse and transmem-
brane current must change similarly with time over one el-
ementary circuit of the nerve transmission line. With this
consideration in mind, we compared time variations of the
transmembrane currents in Figs. 2 and 3 for same values of
the feedback �. On Fig. 3 the pulse shape of the transmem-
brane current is clearly apparent at positive times for suffi-
ciently large values of the feedback, and is expected to be
more and more pronounced as � increases in contrast to Fig.
2 where there is no pulse profile emerging. Remarkably, the
pulse profile in Fig. 3 with a relatively longer branch of
decreasing excitation toward the resting phase compared
with the rising phase is in qualitative agreement with the
typical profile reported in most electrophysiological record-
ings. However, as already said, we can only gain a qualita-
tive understanding from the two CV characteristics assumed
in this study, a more elaborate formulation is required using
exact expression�s� of the CV characteristic which can be
extracted from experimental data for each specific nerve or-
gan.

IV. PHYSICAL VIRTUES OF THE CONTINUUM
NONLINEAR NERVE TRANSMISSION LINE EQUATION

In the previous section, time series of the voltage Eq. �3�
have clearly revealed a strong influence of the capacitive
feedback of the nerve membrane on the transmembrane volt-
age excitations. Namely, we found that the capacitive feed-
back drives well-localized short pulses which are relatively
more stable than the exponentially extended objects found in
the linear regime �11�. Here we shall discuss the physics
behind the full nerve transmission line Eq. �3� with a specific
emphasis on the effect of the capacitive feedback on the
transmission properties of the nerve impulse. Assuming the
length of elementary sections of the line to be very small so
that the line can be considered infinite, the continuum limit
approximation in the weak dispersion regime leads from the
discrete Eq. �3� to the following one:

�Q�V�
�t

+
1

r�x
�V − E� =

�x

ri

�2V

�x2 . �8�

This is a continuum equation which, for a constant capaci-
tance, reduces to a linear dissipative partial differential equa-
tion admitting exact analytical solutions �11�. For this last
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case, it has been found that the nerve impulse has a kink
shape as it propagates across the nerve fiber. However, be-
cause of the linear character of the transmission line, the
excitation experiences spatial spreading as a result of the

whole set of associate spatial parameters �i.e., characteristic
lengths and threshold voltages� depending on the propaga-
tion velocity. Thus, depending on the magnitudes of spatial
parameters and the transmission speed, the dispersion rela-
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FIG. 2. Time courses of the transmembrane voltage �left column� and current �right column�, from numerical simulations of the voltage
Eq. �6� with the charge-voltage characteristic Eq. �4�. For all curves E=50 and Cm0r�x=1, while � is increased from the top to the bottom
pairs of graphs as follows: �=0.0015,0.002,0.005,0.01.
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tion gives rise either to a pure exponential amplification/
decay of the transmembrane excitation, or an exponential
amplification/decay with a sinusoidal modulation in both
space and time. When the capacitive feedback of the nerve

membrane is taken into consideration, the voltage Eq. �8�
turns to a nonlinear partial differential equation with a linear
dissipation. Although this equation seems difficult to solve
analytically, solutions at finite nonzero values of the feed-
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FIG. 3. Time courses of the transmembrane voltage �left column� and current �right column�, from numerical simulations of the voltage
Eq. �6� with the charge-voltage characteristic Eq. �5�. Parameter values are the same as in Fig. 2.
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back � are expected not to differ from Figs. 2 and 3 by virtue
of the Galilean transformation and translational invariance in
a reference frame attached to the wavefront of the propagat-
ing excitation. Ultimately we can expect an impulse with a
sharp spatial and short duration profile and in turn, a robust
excitation against the line dispersion consequent upon the
compensation of the line dispersion by the anharmonicity
provided by the capacitive feedback.

It has been established �11� that for myelinated fibers with
constant capacity, the exact solution to the continuum Eq. �8�
is given in terms of the error function. Hence, in this specific
physiological context the nerve impulse is Gaussian with a
characteristic width and intensity which are directly and in-
versely proportional, respectively, to the impulse propagation
time. Examining solutions to the nerve fiber Eq. �8� in the
same physiological condition but now with the capacitive
feedback, we find the analytical solution:

V�x,t� = �� + exp
x + �t

���� �−1

, �9�

for the linear CV law Eq. �4� and

V�x,t� = �� + exp − 2
x + �t

���� �−1/2

�10�

for the quadratic CV law in Eq. �5�. In Eq. �9� and �10� the
quantity ���� is defined as

���� =
�x

riCm0�
, �11�

and stands, in the first solution Eq. �9�, for the characteristic
width of the transmembrane voltage excitation while for Eq.
�10� it corresponds to half the impulse characteristic width.
On Fig. 4, we plot the voltage excitation suggested by the
two solutions �left graphs� as well as the corresponding cur-
rents �right graphs�, for arbitrary values of the constant �and
dimensionless� parameters in the propagation equation but
different arbitrary values of the feedback �, i.e., 0.01, 0.025,
0.05, 0.1.

In each of the four graphs, when � increases from 0.01 to
0.1 the transmembrane voltage and current are more and
more well localized excitations in the space-time coordinate
z. As expected, the sharpest structures emerge for the qua-
dratic CV characteristic which, according to graphs of Fig. 3,
gives rise to impulses with the shortest durations.
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FIG. 4. Shapes of the transmembrane voltage �left graphs� and current �right graphs�, corresponding to the charge-voltage characteristic
Eq. �4� �top pair of graphs� and Eq. �5� �bottom pair of graphs�, for different values of the feedback parameter � as given in the text.
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V. CONCLUSION

In this study, we addressed the problem of the nerve im-
pulse generation and transmission in a cable model where the
nerve membrane is assumed to provide the essential feed-
back for stabilizing the impulse. In this context, the nerve
capacitance was represented by a self-regenerative diode
with a nonlinear charge-voltage �QV� characteristic. By con-
sidering two different elementary QV laws for theoretical
illustration, time series of the transmembrane voltage and
current have revealed a rich family of shape patterns charac-
terized by well-localized short impulse profiles at relatively
strong feedback.

Although the quadratic CV characteristic apparently best
represents the nerve impulse shape among the two laws con-
sidered in our study, this certainly does not mean that it
constitutes the ideal representation of the feedback function
of the membrane capacitance as expected in vivo. In fact, the
assumption of very small values of the feedback parameter �
is suggestive of a truncated expression from some more com-
plex function within a polynomial expansion in the weak �
regime. From this last standpoint, several forms of such

functions can be envisaged two most common in nonlinear
electronics being the logarithmic and power-laws
�15–18,21,22,26� characteristics. However, obtaining a pre-
cise form of the CV characteristic actually requires an analy-
sis of reliable experimental data on the nerve impulse trans-
mission in defined physiological conditions. A deeper study
involving available experimental data on the response of the
nerve membrane capacitance to the transmembrane excita-
tions is therefore necessary to gain complete qualitative as
well as quantitative understandings of the nerve impulse gen-
eration and transmission, within the framework of the pro-
posed approach based on the picture of a nerve stimulus
driven by the feedback of the membrane capacitance.
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